Tag Archives: Linux

Fixing KRDC VNC Scaling

I’m going to show you how to fix a problem that’s driven me crazy literally for years.
If you’re using KRDC to remotely access a computer with VNC, the Scale button, by default, does nothing.
It’s actually a super easy and kind of silly fix. If you prefer video, see my YouTube video on this embedded at the bottom.

If you click the Scale button nothing happens


If you look at the KRDC config file you can see that scaling defaults to 100.

~/.config/krdcrc


For some reason, this causes the scaling button to do nothing.
To fix this, you could hand edit the krdc config file every time you have a new connection, or, you can just add the Scaling Factor action to the toolbar.

Go Settings then Configure Toolbars


Scroll down and select Scaling Factor
Click the right arrow to add it to the toolbar
Click the up arrow to put it next to Scale
Click OK

If you click Scale, still nothing happens.
Turn Scale on and then drag the slider and scaling will start working!

Turn on Scale and adjust the slider


At this point you won’t have to drag the slider anymore.
Once scale is off of its default value, the scale button works as expected. Simply do this for every new VNC client you connect to.

If you prefer video, follow along here:

Fix for Android SDK Errors in Unity on Linux

When I add Android support for Unity on Linux as an additional module in Unity Hub, I find that Unity is unable to the SDK.

The problem appears to be that Unity does not set the binaries included as executable after extracting. I believe this may be fixed on newer versions of the Editor, but this is an issue for me on 2020.3.28f1.

The simple fix is to make all files in the AndroidPlayer executable. If Unity is open, close it.

Open Konsole or another terminal app.

cd ~/Unity/Hub/Editor/[Unity version]/Editor/Data/PlaybackEngines/AndroidPlayer
find . -type f -exec chmod +x {} \;

When you re-launch Unity, it should have no problem using the Android SDK.

Native KDE File Dialogs in Firefox

One of my favorite things about running KDE’s own distro, KDE Neon, is how it defaults to using the KDE file UI in Firefox. I’m not sure why Kubuntu and Fedora KDE don’t know this, but it’s easy enough to configure.

Installation

The magic behind this is Firefox’s ability to use an XDG desktop portal. You probably already have the KDE XDG desktop portal installed, but if not, simply run:

Fedora
sudo dnf -y install xdg-desktop-portal-kde
Kubuntu
sudo apt install xdg-desktop-portal-kde

Configuring Your Shell

Next, we tell GTK apps, like Firefox, to use the KDE file dialogs if they’re able. We do that by setting in a variable in either our ZSH or BASH configuration (whichever your default shell is).

ZSH
echo export GTK_USE_PORTAL=1 >> .zprofile
BASH
echo export GTK_USE_PORTAL=1 >> .profile

Now just log out and back in and you get should native KDE file dialogs when saving or opening files with Firefox!

Thunderbird Flatpak & GTK Themes

One of the reasons I switched to Fedora recently was it’s support for Flatpaks. Sure they’ll work anywhere, but having them be such a big part of Fedora (check out Fedora Kinoite) really intrigued me. I love the idea of having the same version of apps across distros that’s also the latest (or nearly) version of the app.

I also like when every app looks like it’s part of the same ecosystem. The KDE and Gnome devs have done an awesome job of that by making themes that work in both GTK and Qt (KDE) apps. Unfortunately, Flatpak apps using GTK on KDE don’t automatically use the theme you’ve set in System Settings.

To fix that, I’ll show you how you can use the Flatseal app to set the GTK them for Flatpak apps. You can do this through the shell for individual apps and universally, but I prefer this way to give myself flexibility.

I’m assuming you’re using Breeze or Breeze-Dark here. Otherwise, substitute with the theme you are using. If the theme you are using is not in flathub, you might need to choose one that is.

sudo flatpak install org.gtk.Gtk3theme.Breeze
sudo flatpak install org.gtk.Gtk3theme.Breeze-Dark

Install the Flatseal app from flahub as well:

sudo flatpak install com.github.tchx84.Flatseal

Open the Flatseal app and choose Thunderbird on the left.
Scroll down to the variables section, slick the + symbol, and add:

GTK_THEME=Breeze-Dark

The next time you start Firefox it should be using the Breeze Dark Theme! You can do this for any flaptak app that uses GTK.

Fedora & Plasma Tips

I’m a serial distro jumper. I have been as far back as I can remember. I’d been on Kubuntu for quite a while, happy as can be, which obviously made me bored. With all the hype surrounding Fedora 35, I thought I’d give it a whirl! In a sense, it’s “coming home” for me: I started out on Mandrake way back in the late 90s followed by RedHat and Fedora Core for quite some time. So far, I’m loving Fedora! Here’s some quick tips and tricks I used to make Fedora my own.

ZFS Encrypted Home Directory

I love ZFS and disto-hopping, so using ZFS on a separate drive as my home directory was a no brainer! Here’s my guide on how you can set this up on Fedora or Ubuntu/Kubuntu.

KDE Native File Dialogs in Firefox

RPMFusion

RPM Fusion is where many of the apps and utilities you’ll want to use, but Fedora can’t/won’t distribute, live. Amongst these are the NVIDIA propriety drivers, HEIF support, etc.

RPMFusion is more or less “official” and is often referenced in the Fedora documentation. You can fairly safely add this repository without fear of configuration explosions or security risks.

Click this link, and choose your version of Fedora under the Graphical Setup heading: https://rpmfusion.org/Configuration

Flathub

One of the great things about Fedora is it’s becoming built around the idea of having all of your apps installed as Flatpaks. This increases system security, ensures you always have the latest versions of apps, and make it easy to always run the same version of apps across multiple distros. This is really handy if you’re sharing files across distros.

While Fedora hosts many Flatpacked (I think that’s a verb) apps on their infrastructure, I prefer Flathub which tends to be a bit more up-to-date, has more apps, and is available on pretty much every distro available.

Here’s Flathub’s instructions on how to make their apps available in Fedora: https://flatpak.org/setup/Fedora/

Flatseal

(coming soon)

HEIC/HEIF Images in Gwenview & Dolphin

Gwenview is KDE’s default image viewer. It’s a great application, but it’s missing HEIF image support out-of-the-box. If you have an iPhone, this probably the format all of your photos are stored in. Luckily, adding HEIF support fore Gwenview is very simple in Fedora!

First, make sure to install the RPM Fusion repository. Instructions are above: https://www.shernet.com/linux/fedora-and-plasma-tips/#rpmfusion

Next, run the lines below to update your repository database and install the plugin.

sudo dnf update
sudo dnf install qt-heif-image-plugin

The steps below do no appear to be necessary in KDE 5.25+

Now that you have support for HEIC/HEIF installed, you can configure Dolphin to show image previews.

sudo nano /usr/share/kservices5/qimageioplugins/heic.desktop

Paste in the following:

[Desktop Entry]
Type=Service
X-KDE-ServiceTypes=QImageIOPlugins
X-KDE-ImageFormat=heic
X-KDE-MimeType=image/heic
X-KDE-Read=true
X-KDE-Write=true

sudo nano /usr/share/kservices5/qimageioplugins/heif.desktop

Paste in the following:

[Desktop Entry]
Type=Service
X-KDE-ServiceTypes=QImageIOPlugins
X-KDE-ImageFormat=heif
X-KDE-MimeType=image/heif
X-KDE-Read=true
X-KDE-Write=true

sudo nano /usr/share/kservices5/imagethumbnail.desktop

Add to the end of MimeTypes:

image/heic;image/heif;

Finally, log out and back in.

Thunderbird

Date/Time

For reasons I still can’t suss out (and I had these same issues with Kubuntu and Thunderbird installed from apt), I always end up with 24 hour dates in the mail list. Now, arguments over the best format aside, I’d really just like to see them as eg: 2:15 PM.

To fix this, 1st open Thunderbird then go to Preferences. Scroll to the bottom and click “Config Editor.”

Type in: intl.date_time.pattern_override.time_short
Click the “+” symbol to add a new config and choose “string”
Set it to: h:mm a

You can find all of your options here: https://support.mozilla.org/en-US/kb/customize-date-time-formats-thunderbird

Hiding the GRUB Boot Menu

(coming soon)

Unity3D

If you using Unity3D, you may find you have issues with Visual Studio Code, Omnisharp, and the version of mono that comes with Fedora. Here’s my quick fix:

That’s all! I hope you found some of these tips and tricks useful and enjoy what I’m finding to be a fantastic distro!

ZFS Home Directory

I tend to hop from Linux distro to Linux distro. One of the things that makes doing so much easier is keeping my home folder on a separate disk. That way I can re-install distributions to my heart’s content without fear of losing my files and settings.

I’m also a big fan of ZFS (ZFS on Ubuntu Server). That means jumping through a few extra hoops to setup ZFS on a separate drive as well as re-importing the zpool every time I swap distributions, but I find it’s well worth it. Here’s a handy guide on how to do just that! I’ll be showing the steps for Fedora and Kubuntu, but they should generally apply to other distros as well.

Disclaimer: I’ve not a ZFS expert, but these steps have worked very well for me on multiple systems. YMMV.

One quick note: ZFS works best with plenty of RAM (it will use everything available to keep data cached). If you are on a RAM-limited system, you can do something similar with encrypted XFS or EXT4.

Pre-Step: Setup Encrypted Home Drive

I’ll be configuring ZFS to use an encryption key stored on the root drive. This is only secure if the root drive is also encrypted. Make sure when you install Linux you tell the installer to use drive encryption.

It will look like this in Fedora:

Encrypted root drive in Fedora

And like this in Ubuntu:

Encrypted root drive in Kubuntu

You’ll be asked to set a password that’s used to encrypt your root drive. You cannot change this password and you’ll be asked to enter this password every time you boot your computer, so make sure you do not forget it!

Don’t worry about configuring your 2nd drive with your home folder during the installation. I find it’s much easier to have the distribution do it’s typical install, then go back and mount your new /home. Just make sure that you create yourself as an administrator or have a root password set.

Once you’ve installed your new distro, reboot into it, but don’t log in. Your computer will get grumpy if you’re logged into a desktop environment while swapping out your home directory.

Press Control-Alt-F3 to get to a terminal window then log in as yourself if you made your account an administrator, or ‘root’ if you did not.

ZFS Installation

Fedora

Make sure Fedora up-to-date

sudo dnf -y update

If there are any updates, reboot (sudo reboot), press Control-Alt-F3, and log back in.

Install ZFS for Fedora by following the official steps below, do not use the zfs-fuse package included with Fedora: https://openzfs.github.io/openzfs-docs/Getting%20Started/Fedora/index.html

Kubuntu/Ubuntu
sudo apt install zfsutils-linux

Creating a New Home Drive

If you already have created a home drive and are re-attaching after re-installing Linux, skip to Importing an Existing Home Drive.

To make things easier, I’ll be running all of the commands as root by first running:

sudo -s

Create an encryption key that will be used to encrypt and decrypt your home drive. Make sure this is only stored on an encrypted root drive and that you have backed up this key somewhere safe. If you lose this key you will lose all access to your drive. You’ve been warned 😉

dd if=/dev/urandom of=/etc/home.key bs=32 count=1 && chmod 600 /etc/home.key

Next you’ll need to find out the name of your drive. Since easy names (e.g. sda, sdb) can change, we want to set it up by something that will not change. I’ll be using the device’s physical location.

Let’s make sure we know which drive has Linux installed on it, and which is going to be used for our home drive, by runing:

lsblk

This will list all of your drives (also called block devices), any partitions on them, and where those partitions are mounted. My output (on a virtual machine) looks like the following. On real hardware, your devices will probably be called sda and sdb (if they’re SATA), or nvme0n1 and nvme1n1 (if they’re nvme):

NAME                                          MAJ:MIN RM  SIZE RO TYPE  MOUNTPOINTS
sr0                                            11:0    1    2G  0 rom    
zram0                                         251:0    0  5.8G  0 disk  [SWAP]
vda                                           252:0    0   64G  0 disk   
├─vda1                                        252:1    0    1G  0 part  /boot
└─vda2                                        252:2    0   63G  0 part   
 └─luks-a954d91b-fda3-4c22-90a6-2b35554129b1 253:0    0   63G  0 crypt /home
                                                                       /
vdb                                           252:16   0  128G  0 disk  

I can see here that my disk with Linux installed on it is called vda, since it has multiple partitions (vda1 and vda2) that are all mounted (as /boot and /). The disk with nothing installed on it is vdb. Therefore, I’ll need to check the physical location of vdb. Please comment below if you’re having trouble figuring out which drive is which and I’ll try to give you a hand!

To list all disks by their location, run:

ls -lh /dev/disk/by-path/

The result will look something like this:

total 0
lrwxrwxrwx. 1 root root  9 Jan 28 09:42 pci-0000:00:1f.2-ata-1 -> ../../sr0
lrwxrwxrwx. 1 root root  9 Jan 28 09:42 pci-0000:00:1f.2-ata-1.0 -> ../../sr0
lrwxrwxrwx. 1 root root  9 Jan 28 09:42 pci-0000:07:00.0 -> ../../vda
lrwxrwxrwx. 1 root root 10 Jan 28 09:42 pci-0000:07:00.0-part1 -> ../../vda1
lrwxrwxrwx. 1 root root 10 Jan 28 09:42 pci-0000:07:00.0-part2 -> ../../vda2
lrwxrwxrwx. 1 root root  9 Jan 28 09:42 pci-0000:08:00.0 -> ../../vdb

This tells me that the path I’ll be using is /dev/disk/by-path/pci-0000:08:00.0, since that’s the one that’s being called vdb (see the end of the last line).

We’re finally ready to create our ZFS filesystem! First we create a zpool that encompasses all of the drives we’ll be using (we’ll just be using one, but ZFS can be mirrored or RAIDed in more advanced setups).

The command we’ll run is:

zpool create homepool -O xattr=sa -O acltype=posixacl -O atime=off -O compression=lz4 -O encryption=aes-256-gcm -O keyformat=raw -O keylocation=file:///etc/home.key -o ashift=12 /dev/disk/by-path/[your disk here]

Here’s what some of those options mean:
ashift=12 : This specifies the drive’s block size. From what I’ve cobbled together, use the number 12 for most use cases unless it’s a Samsung NVME or you know your drive uses 8K clusters. In that case, use 13.
homepool: this is the name we’ve given to the zpool. You can use something else if you’d prefer.
compression=lz4: This compresses all data, increases the performance of ZFS, and essentially costs no additional CPU resources. More information here: https://www.servethehome.com/the-case-for-using-zfs-compression/
encyption=aes-256-gcm: Use AES 256 GCM encryption which is both highly secure and hardware accelerated

Now, let’s check out that brand new zpool!

zpool status

You should see something like this:

  pool: homepool
 state: ONLINE
config:

        NAME                STATE     READ WRITE CKSUM
        homepool            ONLINE       0     0     0
          pci-0000:08:00.0  ONLINE       0     0     0

errors: No known data errors

A zpool is a container for filesystems. Now that we’ve got one, we can create a filesystem where our home drive will live. In all of the steps below, replace [user] with your username.

zfs create homepool/[user]

To see information on this new filesystem, you can run:

zfs list

Now, let’s replace our old home drive (that was created when Linux was installed) with the filesystem on our second drive:

cd /home
mv /home/[user] /home/[user].bak
mkdir /home/[user]/
zfs set mountpoint=/home/[user] homepool/[user]
zfs set mountpoint=none homepool
chmod --reference=/home/[user].bak /home/[user]
mv /home/[user].bak/* /home/[user]/
mv /home/[user].bak/.* /home/[user]/
rmdir /home/[user].bak
chown -R [user]:[user] /home/[user]
#For Fedora and other distros with selinux, run the next line too:
restorecon -vR /home

Linux doesn’t yet load keys for encrypted zfs mounts automatically. You’ll need to create a simple service to automatically load zfs encryption keys on boot.
Like most good things, this is from the Arch Linux wiki: https://wiki.archlinux.org/title/ZFS#Unlock_at_boot_time:_systemd
You MUST do this before you reboot or you will not be able to log in graphically. If you forget, press Control-Alt-F3 and log into the console.

nano /etc/systemd/system/zfs-load-key.service

Type in the following (if you’re uncomfortable typing by hand, you should be able to switch to the graphical login (Fedora: Control-Alt-F2, *buntu Control-Alt-F1) and copy paste).

[Unit]
Description=Load encryption keys
DefaultDependencies=no
After=zfs-import.target
Before=zfs-mount.service

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/sbin/zfs load-key -a
StandardInput=tty-force

[Install]
WantedBy=zfs-mount.service

Next, tell Linux to start the new service every time it boots:

systemctl enable zfs-load-key

Finally, reboot and log in normally to make sure everything works as anticipated:

reboot

Now you should have a fully functioning install with encrypted ZFS home directory! Remember to backup /etc/home.key somewhere secure that *isn’t* in your home directory, since you’ll need to copy this key back any time you re-install Linux. I’d recommend an encrypted USB key.

If you have multiple users, you can follow those same steps to create a zfs filesystem for each of them in zpool you created.

Steam

If you use Steam and want to keep your game installations separate so they don’t get backed up with zfs snapshots, you can create a separate filesystem for it.

mkdir -p /home/[user]/.local/share/Steam
sudo zfs create homepool/[user]/steam -o mountpoint=/home/[user]/.local/share/Steam

Importing an Existing Home Drive

Only follow these steps if you’ve re-installed Linux. They aren’t necessary if you just created a new zpool above.

After you’ve re-installed Linux, make sure you complete ZFS Installation above. Once those are done, you can proceed from here.

If you are not the root user yet, run:

sudo -s

Next, you’ll need to copy your backed up key to /etc/home.key

If it’s stored on an encrypted flash drive, it may be easiest to log in graphically, restore the file, then log out and return the console with Control-Alt-F3.

Once it’s restored, make sure it still has the correct permissions

chown root:root /etc/home.key && chmod 600 /etc/home.key

Rename your existing home directory:

cd /home
mv /home/[user] /home/[user].bak
mkdir /home/[user]
chmod --reference=/home/[user].bak /home/[user]
chown [user]:[user] /home/[user]

List all zpools the system can find for import:

zpool import

You should see your homepool listed

   pool: homepool
     id: 16378698673868876678
  state: ONLINE
 action: The pool can be imported using its name or numeric identifier.
 config:

        homepool            ONLINE
          pci-0000:08:00.0  ONLINE

You can now import it by name and mount the zfs filesystems:

zpool import homepool

Before the filesystems can be mounted, we’ll need to create and enable the ZFS key loading service.

nano /etc/systemd/system/zfs-load-key.service

Type in the following:

[Unit]
Description=Load encryption keys
DefaultDependencies=no
After=zfs-import.target
Before=zfs-mount.service

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/sbin/zfs load-key -a
StandardInput=tty-force

[Install]
WantedBy=zfs-mount.service

Next, tell Linux to start the new service every time it boots, and start it now:

systemctl enable --now zfs-load-key

Finally, we can mount all of the zfs filesystems:

zfs mount -a

You can confirm they are mounted by typing:

mount

The last line of the output should be something similar to:

homepool/adam on /home/adam type zfs (rw,noatime,seclabel,xattr,posixacl)

If you’re on Fedora, be sure to run the following to make selinux happy:

restorecon -vR /home

Reboot and log in. Since all of your personal settings are saved to your home drive, everything should be exactly how you left it!

Memory Usage

If you find ZFS is using too much memory (apps keep crashing), you can adjust how much RAM ZFS uses for its cache (how much of your drive it keeps in memory for quick access).

To test different settings, set the maximum arch size in bytes and then clear the cache. This setting is temporary, so if you run intro trouble, just reboot.

sudo echo "8589934592" > /sys/module/zfs/parameters/zfs_arc_max
sudo echo 3 > /proc/sys/vm/drop_caches

Once you’ve found a size that works for you, you can set the size permanently.

sudo echo "options zfs zfs_arc_max=8589934592" >> /etc/modprobe.d/zfs.conf

Unity3d On Fedora

I recently switched from Ubuntu to Fedora and realized that Omnisharp in VS Code for Unity3D projects was not working correctly, even with Use Global Mono set to Always.

The fix ended up being simple: even though they are the same version, install Mono from the mono project’s repository, not Fedora’s.

First: Install mono from here:
https://www.mono-project.com/download/stable/#download-lin

Then, open VS Code and go to settings. To make this change for all projects, click User. To change for just this project (which I’d recommend) click Workspace. This will allow you to do your regular .Net development using the built-in mono (and eventually .Net Core).

Set Omnisharp: Use Global Mono to “always.”

That’s it! That should do the trick.

FIX: Plasma 5, Konsole, & TMUX

The Problem:

I recently fired up Konsole and tried using tmux when I suddenly realized that Control-B wasn’t working.

Plasma, in one of their recent updates, seems to have added an “Add Bookmark” global shortcut to all Plasma apps mapped to Control-B. While it’s active, Control-B in Konsole won’t get sent to tmux, but will instead keep adding bookmarks to the Konsole Bookmarks menu.

The Fix:

Open System Settings
Under “Workspace” choose “Shortcuts”
Select “Standard Shortcuts”
Find “Add Bookmark” in the list
Change the Shortcut to Custom, then don’t assign a key sequence. This will set it to none.

Once changed, tmux should immediately start working again

Adventures in Plasma Land

Or, can a man fall in love with KDE, 20 years later

KDE has never been able to capture my heart. I remember trying KDE 1.1 or so on Madrake Linux 6 in the late 90s. It just never clicked for me. I opted instead for Enlightenment. Ever since then, I’ve tried it every year or so to see if I could understand peoples’ love for it. I didn’t fall for KDE 3.5 that so many people remember fondly, or KDE 4, which people recall much less fondly. I’ve peeked in on KDE Plamsa 5 during it’s development, but it never was able to bring me in. But here I am, in 2019, about 20 years since I started using Linux, and I’ve giving KDE Plasma 5.16.4 a go!

Background

So, why now? Well, as I said, I try KDE every now and then. Something about it always draws me in, before turning me off again. I recently ended up down an internet rabbit hole following articles on Plasma mobile, Qt Python bindings and even Qt C# bindings for .Net Core (and I love me some C#). I wondered: “Could Plasma, Plasma Mobile, Qt, and C# be the epic combo of my dreams?” Let’s find out!

Setup

I’m running KDE Plasma 5.16.4 on KDE Neon Linux. Neon is based on Ubuntu 18.04 LTS using KDE’s own, and constantly updated, repos for Plasma itself. I figured as long as I’m giving a fair shake, I ought to go right to the source. (As I’ve written this article, I’ve upgraded across a few versions of 5.x Plasma)

I’m running it on my trusty desktop with a Core i7 920, AMD Radeon RX 560, 12 GB RAM, a 512 GB SSD, and a HiDPI monitor at 3840×2160. It’s my daily driver at home for general computing, gaming, and game development.

I’m also running the X11 version of Plasma, rather than Wayland. I did some testing and Wayland seems to be particularly fluky with AMD graphics, though remarkably stable on the Intel-graphics based laptop I tested on. Your mileage may vary.

KDE System Info

Window Dressing

At work I use a Mac, so having the close, minimize and maximize icons on the left just keeps my flow going. I really thought this was going to be one of those “sorry, can’t do with Plasma” things. Oh, how wrong I was! In face, Plasma lets you customize all the icons on title bar.

Titlebar icon placement is handled by the “Look and Feel of Windows Titles” settings menu.

Bluetooth

I was able to connect a Bluetooth Microsoft Arc Mouse and my Apple AirPods without any difficulty whatsoever. Major bonus in my book!

Scaling

One of things I love about Plasma is the decimal-based resolution scaling. Wheres the GTK-based desktops I’ve used require scaling at 1x, 2x, 3x, etc., Plasma allows you too choose, for example, 1.5x. This is a huge improvement for HiDPI displays.

The caveat is, you’re probably not going to be running all Qt apps. Invariably, you’ll also run some GTK apps as well. These will ignore your scaling. This was the case for me with Unity Editor.

Luckily, there’s an easy fix!

Open kmenueditor

Find the app you need to scale

Prefix the command with: GDK_SCALE=2 GDK_DPI_SCALE=0.5

Multiple Displays

While this isn’t an issue for me on my main computer, I did want to see how Plasma handled multiple monitors in case I’m able to get a 2nd display at home someday. Using a test laptop with Intel-based graphics I had no problem at all running Plasma with two 4K monitors daisy chained with DisplayPort.

Extra Surprises

PSD Previews

One of the things that drives me crazy about Nautilus is that it doesn’t support the preview of PSD files out of the box. Perhaps there’s a plugin or setting somewhere, but not that I could find. I was thrilled to open a folder with a whole slew of PSD files and see previews of them working by default.

Latte Dock

If you’re a lover of docks like I am, I can’t recommend Latte Dock highly enough! Latte Dock is integrated beautifully into the Plasma ecosystem, with all the fun stuff like pinning and app actions. For example, the Spotify app will give you playback options right from the dock icon.

Issues

Media over SMB

Dolphin (KDE’s file manager) does fantastic job of browsing SMB shares. It’s handy to be able to view shares without actually mounting them, but there’s quite a few drawbacks. Most frustrating was getting media to play when double clicking the file. I was eventually able to get it to work with VLC by using the snap version and dragging/dropping the file into the VLC window, but this still required me putting in my username and password for each video. My recommendation: mount the share, and everything works fine. I found smb4k recommended in a forum for this, and it does a fantastic job. Just make sure to exclude it’s default mount point, ~/smb4k, from your backup jobs.

Discover

Discover is Plasma’s app installation and system update tool. It’s gotten much better over the years (and even since I began writing this article), but can still be finicky.

[Update: the awesome Nate Graham fixed what was apparently an issue with how kmenuedit comes up in search results. Thanks so much!
https://invent.kde.org/plasma/kmenuedit/-/merge_requests/5]
For example: if I search for ‘kmenu,’ I get nothing. It’s not until I search for ‘kmenuedit’ that I get a search result. I just seems by now that I should be able to do a partial search and good results.

Wherefore art thou kmenuedit?
Oh, there you are.

I will say this about Discovery: it’s ability to handle both apt and snap versions of packages is very convenient!

KRDC

KRDC is a Qt-based remote desktop app for Plasma. It works great on a regular-resolution displays, but has some strange scaling issues for me on a HiDPI display and AMD graphics. I like to have a bunch of remote desktop sessions open at once, so I’ll typically have the remote desktop display be the current size of the client window. This works great in Remmina (the GTK equivalent of KRDC), but with KRDC I can never get it working quite right. (See below)

My old Windows VM and Plex server, before I migrated it to Ubuntu

Verdict

I’m sold! I started this article about four months ago wondering when I’d switch from Plasma back to Budgie. Now, I can say without a doubt that Plasma will remain my desktop of choice for the foreseeable future. Great job Plasma team!

ZFS on Ubuntu server

Ubuntu Home Server Setup Part II

Welcome to Part II of my Ubuntu Home Server build! In Part I, I did a very basic Ubuntu Server install. In this part, I’ll be creating a ZFS pool and volumes to store all my data on.

Other parts of this guide can be found at:

Home Server With Ubuntu

Setup

I’ll be setting up a server with 8 physical drives.

Disk 0: SSD for OS

Disk 1: SSD for ZFS Intent Log (improves write performance)
(read fantastic information about it here: http://nex7.blogspot.com/2013/04/zfs-intent-log.html)

Disk 2: SSD for L2ARC caching (improves read performance)

Disk 3 – 7: HDDs for ZFS Pool (where all my data with be stored)

Quick disclosure: I’m *far* from a ZFS expert. From what I’ve gleaned, this should suffice for home / small business use. If you’re planning something enterprise-grade, find an expert!

Install Ubuntu

Perform a regular Ubuntu server installation, or use an existing server.

SSH Into the server, rather than using the console. You’ll want to be able to copy and paste when you setup the zpool.

Install ZFS

sudo apt install zfsutils-linux

Create the ZPOOL

I’ll be using RAIDZ (which is like RAID-5) to get redundancy on my disks without losing too much usable space.

ZFS offers many other options, like RAID0, 1, 6, etc. Use whichever is appropriate for your workload.

It is very strongly recommended to not use disk names like sdb, sdc, etc. Those might change across reboots.

Many of the articles I’ve read suggest using UUIDs . However, my experience on Ubuntu Server is that these are not assigned to blank disks. Therefore, I will be using disk paths instead.

These are verbose and a bit of a pain to type, but they make sure you know exactly what disk you are referring to should you need to swap drives in the future. They will also not change on reboots.

To see your installed disks run:

ls -lh /dev/disk/by-path

My output looks like

adam@normandy:~$ ls -lh /dev/disk/by-path
 total 0
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:00:1f.2-ata-5 -> ../../sr0
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:0:0 -> ../../sda
 lrwxrwxrwx 1 root root 10 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:0:0-part1 -> ../../sda1
 lrwxrwxrwx 1 root root 10 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:0:0-part2 -> ../../sda2
 lrwxrwxrwx 1 root root 10 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:0:0-part3 -> ../../sda3
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:1:0 -> ../../sdb
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:2:0 -> ../../sdc
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:3:0 -> ../../sdd
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:4:0 -> ../../sde
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:5:0 -> ../../sdf
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:6:0 -> ../../sdg
 lrwxrwxrwx 1 root root  9 Jul  8 09:06 pci-0000:02:00.0-scsi-0:0:7:0 -> ../../sdh

I chose to install Linux on my 1st drive (sda). I’ll be using sdb for the ZIL, sdc for L2ARC, and sdd, sde, sdf, sdg, and sdh to for the data pool.

First, I’ll setup the data pool. This is where SSH is handy, since you can copy/paste your paths from above.

In my example below, I’m naming my pool “data.” You can use a different name if you’d like. If your setup is like mine, you’ll create one pool with many volumes in it.

I’m using drives with 4k physical sectors, so I’m adding the option: -o ashift=12
This should increase performance, but at the cost of total storage space. You an remove this option if you don’t think it’s a good fit for you.

sudo zpool create data -o ashift=12 raidz /dev/disk/by-path/pci-0000:02:00.0-scsi-0:0:3:0 /dev/disk/by-path/pci-0000:02:00.0-scsi-0:0:4:0 /dev/disk/by-path/pci-0000:02:00.0-scsi-0:0:5:0 /dev/disk/by-path/pci-0000:02:00.0-scsi-0:0:6:0 /dev/disk/by-path/pci-0000:02:00.0-scsi-0:0:7:0

To confirm this worked, run:

zpool list

You should have something like:

adam@normandy:~$ zpool list
NAME   SIZE  ALLOC   FREE  EXPANDSZ   FRAG    CAP  DEDUP  HEALTH  ALTROOT
data  18.1T   238K  18.1T         -     0%     0%  1.00x  ONLINE  -

Next I’ll tell ZFS to use sdb as the ZFS Intent Log

sudo zpool add data log /dev/disk/by-path/pci-0000:02:00.0-scsi-0:0:1:0

Then I’ll tell ZFS to use sdc as the L2ARCH cache

sudo zpool add data cache /dev/disk/by-path/pci-0000:02:00.0-scsi-0:0:2:0

If I run zpool status, I should see my data, ZIL, and cache drives

adam@normandy:/data/download/secure$ zpool status
  pool: data
 state: ONLINE
  scan: none requested
config:

        NAME                               STATE     READ WRITE CKSUM
        data                               ONLINE       0     0     0
          raidz1-0                         ONLINE       0     0     0
            pci-0000:02:00.0-scsi-0:0:3:0  ONLINE       0     0     0
            pci-0000:02:00.0-scsi-0:0:4:0  ONLINE       0     0     0
            pci-0000:02:00.0-scsi-0:0:5:0  ONLINE       0     0     0
            pci-0000:02:00.0-scsi-0:0:6:0  ONLINE       0     0     0
            pci-0000:02:00.0-scsi-0:0:7:0  ONLINE       0     0     0
        logs
          pci-0000:02:00.0-scsi-0:0:1:0    ONLINE       0     0     0
        cache
          pci-0000:02:00.0-scsi-0:0:2:0    ONLINE       0     0     0

errors: No known data errors

Create the Filesystem

Now that the zpool exists, we can create filesystems on top of it.
A pool can have multiple filesystems. I’ll create one for media, and one for virtual machines (because that’s what I need).

sudo zfs create data/media
sudo zfs create data/vm

To confirm it was created correctly run:

zfs list

And it should look something like this:

adam@normandy:~$ zfs list
 NAME         USED  AVAIL  REFER  MOUNTPOINT
 data         210K  14.0T  36.7K  /data
 data/media  35.1K  14.0T  35.1K  /data/media
 data/vm     35.1K  14.0T  35.1K  /data/vm

I would also suggest the following tweaks. Combined, they increased my zfs throughput 50-100%! They were recommended by https://unicolet.blogspot.com/2013/03/a-not-so-short-guide-to-zfs-on-linux.html and https://www.servethehome.com/the-case-for-using-zfs-compression/ as I searched for solutions to my less-than-stellar zfs performance.

zfs set xattr=sa data/media
zfs set atime=off data/media
zfs set compression=lz4

All of your zfs filesystems are automatically mounted.

adam@normandy:~$ mount
...
data on /data type zfs (rw,xattr,noacl)
data/media on /data/media type zfs (rw,xattr,noacl)
data/vm on /data/vm type zfs (rw,xattr,noacl

You can use them just as you would any mounted filesystem. That’s it!